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ABSTRACT

With the explosion in the availability of user-generated videos
documenting any conflicts and human rights abuses around
the world, analysts and researchers increasingly find them-
selves overwhelmed with massive amounts of video data to
acquire and analyze useful information. In this paper, we
develop a temporal localization framework for intense audio
events in videos which addresses the problem. The proposed
method utilizes Localized Self-Paced Reranking (LSPaR) to
refine the localization results. LSPaR utilizes samples from
easy to noisier ones so that it can overcome the noisiness of
the initial retrieval results from user-generated videos. We
show our framework’s efficacy on localizing intense audio
event like gunshot, and further experiments also indicate that
our methods can be generalized to localizing other audio
events in noisy videos.

Index Terms— Gunshot detection, Audio event detec-
tion, Self-paced Learning, Audio reranking

1. INTRODUCTION

Tremendous amount of videos is being uploaded to social
network sites every minute, documenting every aspect of
our lives and events all over the world. This boom of ever-
increasing video data has resulted in an explosion in the
availability of documentation and visual evidence for any un-
expected conflicts events or wrong-doing, such as the Boston
Marathon Bombing in 2013 and the Shooting of Dallas po-
lice in 2016. Such incidents usually happen during a major
event where a large crowd of people are gathered and record-
ing the surroundings with personal devices. As audio-visual
surveillance data are often unavailable at the scene, such
huge volume of user-generated videos are probably the only
source for researchers and analysts to investigate the situ-
ation. However, due to the daunting amount of videos, it
is almost impossible for analysts to extract useful informa-
tion manually in a short time to assist law enforcement for
immediate action [1].

Automatic methods for detection and localization of in-
tense events in a large video collection [1], such as gunshot,
explosion, are important for analysts and researchers to un-
cover useful evidence that is widely dispersed over time or
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spread through different videos captured by multiple people.
For example, such system can help analysts to pinpoint video
segments in Dallas Shooting that contain gunshots so that they
can locate the shooters and analyze the situation. People in
these intense events are frightened or confused, and thus the
captured visual information are often too blurry, obscured or
unstable to be useful. On the contrary, audio becomes a reli-
able signal for detecting an event. For example, gunshots or
explosion sound can be robustly detected in videos with very
low resolution.

A major research challenge in audio event detection lies in
temporal content localization which not only needs to detect
which videos have the interested events, but also to tempo-
rally localize the events within the videos. To address this
challenge, this paper proposes a novel method called Local-
ized Self-Paced Reranking (LSPaR). Reranking has been an
important technique in retrieval to improve initial search re-
sults, and has proven to be effective in a variety of prob-
lems [2]. The proposed LSPaR advances the state-of-the-art
reranking method by allowing it to temporally localize au-
dio events within a video clip. Since the initial ranked list
is noisy, LSPaR trains a reranking model starting from easy
samples with more confidence score from the top of the list
and then gradually incorporates noisier samples later. Such
easy to noisy strategy has proven to be efficient in the learn-
ing of noisy data [3]. To verify its efficacy and robustness,
we conduct experiments on three datasets for localizing the
gunshot event, where LSPaR significantly outperforms exist-
ing baseline methods. We also experiment on other common
audio events and demonstrate that LSPaR can generalize to
discover general audio event in videos.

2. RELATED WORK

Audio Event Detection: Many early works on soundtrack
analysis focused on distinguishing a small number of sound
classes such as speech, music, silence or noise. They were
solved with various traditional machine learning and signal
processing approaches [4, 5, 6]. Such works were mostly
done on clean broadcast or television program audio date
[5]. With the increasing number of user-generated videos
available, many research works were done for this more
challenging data. We can categorize soundtrack analysis
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work into sub-soundtrack classification or entire soundtrack
classification. Recently there are a number of efforts to clas-
sify short video clips into a fixed number of sound classes.
The TRECVID multimedia event detection (MED) annual
evaluation organized by the NIST! is a representative bench-
mark [7]. The MED using soundtrack is the entire soundtrack
classification problem[7]. Many works compared different
acoustic features and discriminative models for modeling
event [8, 9, 10]. Similar approaches were used for sub-
soundtrack classification on user-generated videos [11].

There were also many works that specialized in gunshot
detection. One focused on detecting gunshot in movies using
dynamic programming and Bayesian networks [12]. Audio-
Surveillance Systems were also used with various acoustic
features for scream and gunshot detection [13]. A two-stage
approach was used to improve efficiency and reliability of
gunshot detection systems [14]. These approaches were spe-
cially designed for gunshot detection and may not be able to
generalize to other audio event detection. In this paper, we
show that our method not only produces accurate gunshot de-
tection results but also demonstrates that it can be generalized
to detect other audio events.

Reranking: Reranking methods were first used in text
retrieval [15]. Most reranking methods are unsupervised
methods that includes classification [16], clustering [17]
and Learning-to-rank based reranking [18]. The TRECVID
annual evaluation organized by NIST included a content-
based search task, the multimedia event detection (MED)
OEx (Zero-Example) [7]. Under such criteria, where only
text queries were provided to perform a content-based video
search, the reranking methods showed significant improve-
ment over the plain retrieval result [2].

Recently Kumar et al. designed a learning paradigm,
called self-paced learning (SPL) [19]. The learning theory is
inspired by the underlying cognitive processes of humans and
animals, which generally start with learning easier aspects
of a task, and then gradually take more complex examples
into consideration [19]. This theory has been successfully
applied to various applications, such as action/event detec-
tion [20], weakly supervised learning from the Internet [3],
tracking [21] and segmentation [22], reranking [2], etc. Fol-
lowing the idea, after initial retrieval results of possible seg-
ments that may include the audio event, our framework learns
a reranking model iteratively from first using a few segments
within the videos with more confident scores, then incorpo-
rates more noisy segments.

3. AUDIO EVENT LOCALIZATION FRAMEWORK

The proposed audio event temporal localization framework
contains the following key components as shown in Figure 1.

Audio Feature Representation. In order to temporally
localize audio event within a video, we first extract soundtrack

"https://www.nist.gov/
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Fig. 1. Audio Event Temporal Localization System
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from the videos and chunk the audio stream into small seg-
ments with overlap (exp. 3-sec window and 1-sec shift). We
incorporate the widely used Bag-of-Words (BoW) features[§,
11] in our system. In this paper we apply this model to the
low level MFCC features.

Event Detector Model. After we extract audio features,
we train two-class SVM classifiers for each audio events and
then apply them to the video segments from test videos. How-
ever, because of the nature of the user-generated videos, the
initial detection results have low accuracy due to noise.

Localized Self-Paced Reranking. For the test videos, af-
ter the detector model produces an initial ranked list of video
segments, we utilize LSPaR to learn a reranking model itera-
tively from first using a few video segments with more confi-
dent scores at the top of the list, then incorporates more noisy
segments. Detailed algorithm is described in the following
section. Finally after smoothing we merge the segment re-
sults and output the final localization result.

4. LOCALIZED SELF-PACED RERANKING

4.1. Objective Function
To overcome the noise of the initial detection result, we
propose Localized Self-Paced Reraning (LSPaR). Formally,
given a set of D of n video segments, Let L(g;, g(x;, w)), or
{; for short, denote the loss function which calculates the cost
between the pseudo label §; and the estimated label g(x;, w).
g; € {—1,1} is the pseudo label for the ith video segment
whose value is assumed since the true labels are unknown.
Here w represents the model parameter inside the decision
function g. For example, in our paper, w represents the
weight parameters in the Support Vector Machine (SVM).
Our objective function is to jointly learn the model param-
eter w, the pseudo label § and the latent weight variable
v =[vg, -, v,]T for the video segments by:

DinE(w,v, 500 =3 v:L(§i,g (%0, W)+ (Vi ), 0

o i=1
st.g; € {—1,1},ve ¥

where L is the standard hinge loss, calculated from:
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L(g;,9(x;,w)) = max{0,1 — §;g(x;, W)} 2)

€ [0,1]™ denote the latent weight variables reflecting the
pseudo labels’ confidence, which determine a learning se-
quence for the video segments. Video segments with greater
weights tend to be learned earlier. Our goal is to assign greater
weights to the segments with more confident labels whereas
smaller or zero weights to the segments with noisy labels. To
this end, we employ the self-paced regularizer f, which con-
trols the learning process of the model [20].

W in Eq. (1) is a curriculum region [20] that incorporates
the localization knowledge extracted from the initial detection
result as a convex feasible region for the weight variables. The
shape of the region indicates a prior learning sequence for the
segments, where favored segments have greater expected val-
ues. The region is derived based on initial detection results,
i.e. video segments in videos that have greater initial detec-
tion scores have greater expected values. For simplicity, in
this paper, ¥ is only used in the initialization of v.

We consider the linear regularizer Eq. (3) proposed in [20,
3] with dropout strategy to address the noise in the videos:

i(p) ~

F(vixp) =

Bernoulli(p) + ¢, (0 < e < 1)
3
7)\2 71)1 _ 3

where r is a column vector of independent Bernoulli random
variables with the probability p of being 1. The term dropout
in this paper refers to dropping out samples in the iterative
learning. By dropping out a sample, we drop out its update to
the model. In practise, we only apply dropout to the selection
of negative segments.

4.2. Algorithm

Algorithm 1: Localized Self-Paced Reranking.

input : Input a initial ranked list of D and a step size p
output: Reranked list D*

Initialize v*, y*, A, and ¥ based on D;

while not converged and not reach max iteration do
Update w* = arg miny, E(w, v*, §*; \, ¥);
Update §* = argming E(w*,v*, ;A\, U);
Update v* = arg min, E(w*, v,5*; A, ¥);
if \ is small then increase A by the step size y;

end

Apply w to D to get D*;

return D*

DR - 7 I SN S S R

Eq.(1) is difficult to optimize directly due to its non-
convexity and complex constraints. Following [19, 2], we
employ the alternative convex search algorithm to solve
Eq. (1). The algorithm divides the variables into three blocks,
i.e. classifier parameters w, pseudo labels y and latent weight
variables v. Algorithm 1 takes the input of the initial ranked
list and a step size parameter, and outputs the reranked list.

First of all, it initializes the pseudo label and the latent weight
variables in the feasible region based on the initial ranked
list. Then it alternates among three steps until it finally con-
verges: Step 3 learns the optimal model parameter with the
most recent v* and the pseudo labels . We use probabilistic
sampling based on v to select samples for Liblinear [23] to
train the model. In step 4 we learn the optimal pseudo la-
bels. Since ¥ is independent of v and ; € {—1,1}, we can
optimize y by:

y= argmanL Ji,9(x:,w)) 4)

where ¥ denotes the optlmal pseudo label. We can find the
optimal y by enumerating each ;. Step 5 learns the optimal
weight variables with the fixed w* and y. Substituting Eq.

(3) into Eq. (1), we can optimize v* = [v},--- ,v%]T by:
(—1p .
P N Y )
0 bi> A

The underlying intuition of the self-paced learning can be in-
ferred from the solution in Eq. (5). When a video segment’s
loss based on the current optimal pseudo label is less than the
model “age” ), it will be assigned a soft weight for learning
in the next iteration, otherwise it will not be selected. Mean-
while, the dropout strategy also affects the selections of the
segments. The model “age” is gradually increased so that
more noisy segments will be incorporated in the training of
a ”mature” reranking model. In fact, Algorithm (1) is op-
timizing an underlying non-convex robust loss on the noisy
data, which tends to depress samples with noisy labels or
outliers. It theoretically justifies the efficacy of the proposed
method [24].

5. EXPERIMENTS

In this section, we empirically verify the efficacy and robust-
ness of our proposed method on two tasks. Since in most
conflict or violence situation, the gunshot event is often the
interested audio event, we apply our method to temporally lo-
calizing gunshot in videos. In the second task, we perform ex-
periments on localizing a wider range of audio event and show
that our method can be generalized. The code and datasets
can be downloaded from our project website?.

Given the initial ranked lists of video segments or the
reranked ones, we use the average precision (AP) to evalu-
ate the event localization performance for audio event:

1 & ;

=Y x" )
r 4 i
j=1

where 7 is the total number of relevant segments of that event,
n as the total amount of segments, I;=1 when the jth segment
is relevant otherwise 1;=0. A segment is considered relevant
if the target event occurs in over half of that segment. r; is

Zhttp://www.cs.cmu.edu/~ junweil/audioLocalization
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Table 1. Gunshot Temporal Localization Experiments

Table 2. Experiments of Audio Events on 10-Split Urban

’ Baselines ‘ Conflict Videos ‘ TREC ‘ Urban ‘ ’Baselines Precision@5 ‘ Precision@ 10‘ MAP ‘
Without Reranking 0.322 0.223 0912 Without Reranking| 0.540 4= 0.002 |0.517 &£ 0.002(0.566 =+ 0.001
CPRF 0.369 0.226 0916 CPRF 0.543 £ 0.003 {0.520 4+ 0.001|0.579 4+ 0.002
Learning to Rank 0.316 0.218 0.893 Learning to Rank | 0.527 4 0.004 [0.514 4 0.002|0.569 £ 0.002
MMPRF 0.379 0.229 0.916 MMPRF 0.544 + 0.003 {0.522 £ 0.002(0.581 + 0.001
LSPaR 0.424 0.267 | 0.927 LSPaR 0.578 4 0.007 {0.554 = 0.005|0.609 & 0.003

the number of relevant segments in the first j segments. In the
case of localizing multiple events, we report mean average
precision (MAP) as our evaluation metric.

Baselines: The proposed method is compared against the
following four baseline methods which cover both the classi-
cal and recent representative reranking algorithms. 1) Without
Reranking is the initial retrieval method without reranking. 2)
CPRF is a classification-based reranking method. Following
[25], SVM classifiers are trained using the top-ranked video
segments and bottom-ranked ones in the initial ranked list. 3)
Learning to Rank is a ranking method mainly used in web
queries. A LambdaMART [26] in the RankLib toolkit is used
to train the RankSVM model. 4) MMPRF is a method that
the reranking model is trained through t iterations with top-
ranked and bottom-ranked segments [27], in which m = 1
andt = 3.

Our model: Algorithm 1 is used to solve Eq. (1) and
the max iteration is set to 3. For efficiency, we incorporate
Explicit feature mapping [28] with x? kernel in all methods.

5.1. Gunshot Temporal Localization

Training: Since there is no existing large dataset specifically
for gunshot detection in real-life noisy user-generated videos,
we collect about 2,200 weakly labeled gunshot segments, to-
tally over 100 minutes, from freesound.com. We also col-
lect over 4,000 gunshot segments from Youtube.com, totaling
4 hours of data. For negative training samples, we collect
dozens hours of everyday life videos.

Testing: To verify the efficacy of the proposed method,
we test our system on 3 datasets from 3 different domains. 1)
Real-life Conflict Scene Videos (Conflict Videos): We collect
10 real-life videos taken by unprofessional people during the
shooting of Dallas police® and the shooting in Nigeria*. The
longest video for localizing gunshot is 44 minutes long with
only about 2 minutes of gunshot segments. 2) TRECVID Gun-
shot Videos (TREC): We collect 57 videos from TRECVID
SIN task [7] that contain gunshots. 3) UrbanSound Gunshot
Videos (Urban): We collect 117 audios that contain gunshot
from the UrbanSound dataset [29]. We perform experiments
on these three datasets and report the average precision on
each dataset in Table 1.

In Table 1, the best results are highlighted. The pro-
posed method has achieved a relative improvement of 31.7%,

3https://en.wikipedia.org/wiki/2016_shooting_of_Dallas_police_officers
“https://www.youtube.com/watch?v=rRCBZXRoVBo

19.7%, 1.6% on three datasets, respectively. For localizing
gunshot in Urbansound dataset, since the original retrieval
result is already very accurate, the improvement of LSPaR is
minimal. In Real-life Conflict Videos Dataset, the proposed
method significantly outperforms other baselines. As LSPaR
learns from easy to hard samples, it is able to overcome the
noisy environmental sound in conflict videos and thus more
suitable to be used in such kind of data. A fully functional
gunshot temporal localization application is released , where
users can upload any video for online gunshot localization.

5.2. Experiments on Generic Audio Events

In this experiment, we try to verify LSPaR’s performance on
localizing a wider range of audio events. We conduct our
experiment on the full UrbanSound dataset to temporally lo-
calize 9 audio events other than gunshot in 1302 audios. We
randomly split the dataset into 70/30 for training and testing
10 times to reduce the bias brought by the partition. We train
our audio detectors for each audio event in the train split and
test them on the test set. The reranking methods are applied
on the initial testing ranked lists on the test set. Mean pre-
cision at top 5, top 10 results and mean average precision
of all the audio events are reported. In Table 2 we show
the mean and 95% confidence interval of each metric. As
we see, the proposed method also significantly outperforms
other baselines on 9 other audio events on average. For the
event “air_condition”, LSPaR improves initial results by a rel-
ative 20.8% (from 0.516 to 0.623 absolute AP). The experi-
ment results again substantiate the rationality and robustness
of the proposed method. The promising results on other audio
events verify that the proposed method can be generalized.

6. CONCLUSION

In this paper, we proposed a novel reranking framework
for temporal localization of audio events in noisy consumer
videos for conflict and violence monitoring in social media.
LSPaR extracts informative information from the noisy initial
ranked list and improves the retrieval results by a significant
margin. The result suggests LSPaR can not only work on
intense audio events like gunshot, but also can be general-
ized to other kinds of audio events like “’street_music” and
children_playing”.

Shttp://aladdin1.inf.cs.cmu.edu/daisy/index.php/application/cGunshot,
username and password are both ”demo”.
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